ebFlashSetup
User Manual

Version 1.1

Peer Georgi

March 1, 2006

Contents

1 Introduction 2
1.1 Program StruCture v v i i e e e e e e e 3

1.2 UsageJ ... 4
1.2.1 Command line parameters\ 4

1.2.1.1 Configuartion 4

1.2.1.2 Help e 4

1.2.1.3 Documentationt e e e e e 4

‘1.2.2 Environment variables‘ 4

1.3 Supported target platforms\ 5
1.4 Supported operating SyStems e e e e 5

2 The project file 6
2.1 Syntaxi. e e e e e e 6

2.2 Structur& .. 6
2.2.1 Configuration blocH 6

2.2.2 Instruction sectionJ 6

23 Variables 6
2.3.1 Simple variables e e 7

232 Function variableso 7

2.3.3 Configuration variables 7

234 Scopesofvalidity e e e 8

2.3.5 Environment variables‘ 8

2.4 Instruction blockS . . . o o 8

3 Examples 11
3.1 Configuration blocH .. 11

32 Areal example 12
3.2.1 Prerequisites\ 12

322 Creating the project file. . ., 14

4 Extras 19
4.1 Memory content documentation e e e e e e e 20
4.1.1 RAM content during Startupt e e e e e e e 20

412 ROMCONEENt . . . o oo 20

4.1.3 RAM content during conﬁgurationJ 20

5 Internal structures 21
5.1 The allocations table for the system start 22

5.2 The setup table for the ROM setup DrogramJ 23

Chapter 1

Introduction

ebFlashSetup is designed for processing file contents for programming them into the Read Only Memory (e.g.
Flash Memory) of an embedded system. The program generates all necessary data for configuring the ROM.
The program coordinates the file transfer and works together with the file transfer program (,,ebStartUp”). It
uses the project file to generate a configuration file for ,,ebStartUp”.

ebFlashSetup CHAPTER 1. INTRODUCTION

1.1 Program structure

»ebFlashSetup” is part of a group of programs that work together to start an embedded system out of flash
memory. The following programs are required:

» The boot loader of the target system.
It copies programs and data from ROM to RAM and executes the program.

» The ROM configuration program.
It runs on the target system and programs the flash memory.

» The transfer program ,,ebStartUp”.
It transfers program and data into the RAM of the target system and executes the program.

» The data processing program ,,ebFlashSetup”.

EbFlashSetup performs memory management tasks for ROM and RAM of the target system and configures the
transfer program. It manages the target RAM for the following two situations:

1. The startup process.

2. The data transfer with ,,ebStartUp”.

During startup, specified data blocks have to be copied from ROM to RAM. The target addresses in the RAM
are given in the configuration file.

During transfer, the target RAM is used for temporarily buffering the data. ,.ebFlashSetup” takes care of
avoiding address and data conflicts.

Additionally, the ROM is managed for minimizing unused areas - gaps - between stored data blocks. A memory
allocation table (similar to a File Allocation Table) is created and used by the boot loader for reading the data
blocks.

After defining all required memory addresses for every situation, the ebStartUp configuration file is created.
The file is used for the setup process when data are transferred to the target system and written into flash ROM.
In order to communicate with the program that writes data into the flash ROM, a table is needed that contains
information about the RAM and ROM location of the data blocks. The structure of this table, which also is
created by ebFlashSetup, is described here.

Peer Georgi — 3 —

< “SCONITEC DATASYSTEMS_ Documont. 112

ebFlashSetup CHAPTER 1. INTRODUCTION

1.2 Usage

ebFlashSetup” is a console program, set up by a project file. The program behavior is controlled by command
line parameters and environment variables.

1.2.1 Command line parameters

Command line parameters are passed to the program at execution time. Some parameters are optional. If such
a parameter is missing, default settings are used. Parameters have a short and long notation. The short notation
("-p") is for lazy typists, while the long notation ("—project") offers better documentation.

1.2.1.1 Configuartion

Projct file name
At program start the configuration file "setup.prj" is read from the current directory. A different file name can
be given with the command line option "-p filename" or "—project filename".

ebStartUp configuration file name
,.setup.ebs” is the default file name for the ebStartUp configuration file to be generated. A different file name
can be given with the command line option "-o filename" or "—output filename".

Output

By default, only errors, warnings or essential messages are printed to the standard output device. The
parameter "-q" resp. "—quiet" restricts the output to errors only. The parameter "—verbose" causes printout of
all sorts of information.
1.2.1.2 Help
The parameter "—help" prints a list of command line parameters with brief descriptions. This list may be more
up to date than this manual.

1.2.1.3 Documentation

The parameter ,,-d” prints a documentation in Latex format. Please find details under ,,Extras”.

1.2.2 Environment variables

Environment variables can be used for configuring the project file. They are treated like normal variables. See

also|2.3.5.

Peer Georgi —4 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 1. INTRODUCTION

1.3 Supported target platforms

The program was designed for data conversion and configuration for ARMY based embedded systems. It is
suited for all embedded systems that provide a boot loader and transfer programs.

1.4 Supported operating systems
» Linux

At the moment only Linux is supported.

< ~“SCONITEC DATASYSTEMS_ Eifu?ni‘if s

Chapter 2

The project file

The configuration file is a plain text file that can be edited with any text editor. The line break codes of
"MacOS", "Windows" and "Unix" are supported. The file is hierarchically organized and uses keywords and
blocks for structuring.

2.1 Syntax

The syntax is similar to C or C++. Statements end with a semicolon ";". Comments start with "//" and end at
the end of the line. Blocks are opened with "{" and closed with "}". Keywords are case sensitive.

2.2 Structure

The project file consists of two sections, the configuration block and the instruction section. The instruction
section contains instruction blocks. An instruction block specifies the file, the transfer method, and the type
and address properties of the file that affect the address generation.

2.2.1 Configuration block

This block begins with the keyword ,,GlobalSettings” and defines several global variables used by the program.
Local variables can also be defined and used, however only within the configuration block.

2.2.2 Instruction section

This section begins with the keyword ,, TransferSetup” and contains one or several instruction blocks.

2.3 Variables

They are heavily used in the project file. There are different variable types:
» Simple variables
» Function variables

» Configuration variables

ebFlashSetup CHAPTER 2. THE PROJECT FILE
|

2.3.1 Simple variables

They are what you expect variables to be. They are defined by their useage. Values are assigned like this:

// Simple assignment

Filename = ,datei.bin”;

// Assigning a variable content

Imagename = $(Filename);

// Assigning an environment variable content
UserName = $$(USER);

If an assignment is not possible, for instance when an environment variable is undefined, an error message will
be issued. Finite recursive assignments are possible.

2.3.2 Function variables

They are built-in functions, used for assigning contents calculated by ebFlashSetup in real time.

// The next free address in the transfer RAM
TransferLoadAddress = $(QFIRST_POSSIBLE_TRANSFER_SDRAM_ADDRESS) ;

This assignment copies the next free RAM address into the ,, TransferLoadAddress” variable. The real value is
calculated at assignment time.
The following variables are function variables. They are valid within transfer blocks only.

» @FIRST _POSSIBLE_TRANSFER _SDRAM ADDRESS
Next unused address in the target RAM during the data transfer.

» @FIRST POSSIBLE FLASH _ADDRESS
Next free target ROM address.

» @FIRST POSSIBLE BOOTLOAD_SDRAM_ADDRESS
Next free target RAM address during startup.

» @FLASH FILE MAP IMAGE NAME
Name of the file containing the allocation table to be generated.

» @FLASH SETUP_MAP _IMAGE NAME
Name of the file containing the setup table to be generated.

» @IMAGE FILE SIZE
Size of the current image file.

Using function variables greatly simplifies the project file because start addresses can be calculated by eb-
StartUp itself.

2.3.3 Configuration variables

For calculating memory addresses, the program must be fed with information about the used memory. Those
informations must be defined in built-in configuration variables within the configuration block of the project
file. The following variables have to be defined:

» SDRAM SIZE
Gives the target RAM size in bytes.

» FLASH SIZE
Gives the target ROM size in bytes.

Peer Georgi — 7 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 2. THE PROJECT FILE

» FLASH _FILE_MAP_IMAGE_NAME
Gives the file name containing the generated allocation table for the boot loader.

» FLASH FILE MAP ITEMS
Gives the maximum number of entries in the allocation table. If the number is too small, an error message
is issued.

» FLASH SETUP_MAP_IMAGE _NAME
Gives the file name containing the setup table for the flash setup program.

» FLASH SETUP_MAP_ITEMS
Gives the maximum number of entries in the setup table. If the number is too small, an error message is
issued.

» SDRAM_BOOTLOAD_START_ADDRESS
The initial value for the first free address in the target RAM at system start.

» SDRAM_TRANSFER_START_ADDRESS
The initial value for the first free address in the target RAM during transfer.

» FLASH START ADDRESS
The first used target ROM address.

All integer values are given in hex format with leading ,,0x”. Strings, like file names, are given in double
quotes. Memory area conflicts are solved or will be indicated with an error message.

2.3.4 Scopes of validity

Built-in variables used for the configuration are valid within the configuration block as well as within transfer
blocks. User defined variables are only valid within their block of definition. Function variables are only valid
within instruction blocks.

2.3.5 Environment variables

Environment variables can be used whenever a constant or variable content can be assigned. If they are unde-
fined at runtime, an error message is issued. They can be used to make a project externally configurable.

2.4 Instruction blocks
An instruction block contains the following information:

» . Image” = [file name]
The file name.

» ,BootLoadAddress” = [integer]
The start address at system start.

» ,TransferLoadAddress” = [integer]
The start address during transfer and setup.

» ,StoreToFlash” = [yes | no]
Whether to write the file into ROM or not.

e FlashAddress” = [integer | ignore]
The ROM start address.

Peer Georgi — 8 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 2. THE PROJECT FILE

e Execute” = [yes | alternate | no]
Whether to execute the file at system start or not.

» ,.Protocol” =[USB_DFU | USB_LDBA | ...]
The protocol to be used for the data transfer.

» ,.ProtocolParam”
Begins a block whose content is passed directly to the ebStartUp configuration file, without further
affecting ebFlashSetup.

Those statements can be given in any order within an instruction block.

Peer Georgi — 9 —

< “SCONITEC DATASYSTEMS_ Document. 11.2

ebFlashSetup CHAPTER 2. THE PROJECT FILE
|

A typical instruction block might look like this:

Transfer
{
StoreToFlash = yes;
Image = "LdDataFlash'";
FlashAddress = 0x0;
BootLoadAddress = ignore; // the cpu will load this automaticaly //
TransferLoadAddress = $ (@FIRST_POSSIBLE_ TRANSFER_SDRAM ADDRESS) ;
Execute = no;
Protocol = "USB-LDBA";

ProtocolParam
{
Comment = "Loading LdDataFlash...\\\\n ";
Filename = "$(Image)";

LoadAddress = $(TransferLoadAddress);

This block describes a file (,,LdDataFlash”) to be written into target ROM. The flash ROM start addess is

explicitely set at 0. The start address at system start however is omitted. As the MCU automatically loads the

first block from ROM, this entry is ignored by the boot program (by the way, the first block is the boot program

itself).

The start address during transfer does not matter and is left to ebFlashSetup to calculate. The ,,Execute = no”

field means that the boot program shall not execute this entry (because the MCU will execute it anyway).
LDBA is used for the transfer protocol, and its parameters are stored in the ProtocolParam block.

Peer Georgi — 10 —

< “SCONITEC DATASYSTEMS_ Document. 112

Chapter 3

Examples

The examples can be used as templates for individual projects. However the variables have to be adapted in
most cases.

3.1 Configuration block

This configuration block is intended for a target system with 16MByte RAM and 8 MByte flash ROM. RAM
starts at physical address 0x20000000.

Thus the first valid start address at system start is 0x20000000. Using the function variable
LFIRST POSSIBLE_BOOTLOAD_SDRAM_ADDRESS” does not make sense in most cases because
normally start addresses are predefined for the system start.

GlobalSettings
{
SDRAM_SIZE = 0x1000000; // 16MB
FLASH _SIZE = 0x800000; // 8MB
FLASH _FILE _MAP_TMAGE_NAME = "filemap.img"; // the name of filemap-image
FLASH _FILE_MAP_ITEMS = 0x10; // number of entries in file_map
FLASH_SETUP_MAP_ITEMS = 0x10; // number of entries in setup-map
FLASH SETUP_MAP_ IMAGE _NAME = "setupmap.img";
// start values //
SDRAM _BOOTLOAD_START ADDRESS 0x20000000;
SDRAM _TRANSFER _START ADDRESS = 0x20000000;
FLASH_START_ADDRESS = 0x0; // start with this address //

ebFlashSetup CHAPTER 3. EXAMPLES

3.2 A real example

The target system is a MCU module by Conitec Datasystems Corp. It’'s an ARM9 based embedded system
comprising the AT91RM9200 microcontroler. The system contains 128 MByte RAM and 8 MByte ROM.
After the setup process described here, a program has to be executed automatically on the target system. For
this it has to be copied from ROM to RAM after reset, and then executed. The target ROM does not contain a
valid program at first.

In that case the MCU waits after reset for a XMODEM or USB-DFU connection for receiving and starting a
program. For details see the MCU data sheet.

The following programs are available:

» LdDataFlash
The boot loader.

» StDataFlash
The ROM setup program.

» LdBigAppUSB
The LDBA transfer program.

» The test program to be executed at system start.
Call it ,,ping.bin”.
3.2.1 Prerequisites

At first it has to be determined at which RAM addresses the programs are to be executed and which other
settings are required.

Peer Georgi — 12 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 3. EXAMPLES
|

LdDataFlash

This program is automatically loaded in the cache by the MCU. For this it has to be located at ROM address
0. The program also expects the allocation table in the ROM, which describes the further ROM content. The
allocation table address is predefined at 0x4000, as the MCU loads 16 kB from the ROM and the boot loader
must not exceed this size. The allocation table therefore begins immediately after the boot loader.
Additionally the program start address is required. This address - 0x200000 - is defined when the program is
linked. 0x200000 is the MCU cache address where the program is copied to.

Therefore we have the following informationen:

» Execution start addresse: 0x200000
However as the program is executed by the MCU and not by the boot loader, the address can be ignored
in the ebFlashSetup project file.

» ROM start address: 0x0.
» Allocation table start address in ROM: 0x4000.

StDataFlash

The program’s task is configuring the ROM. It is automatically executed after the configuration is finished. It
expects the setup table at a RAM address specified in the program. This table has the structure described in the
chapter/5.2.

» Execution address: 0x20080000
This address results from the linker script.

» setup table start address: 0x20070000
This address is defined by the program itself.

» The program is not loaded into ROM as it has to configure it.

ping.bin

This program has to be started automatically. The execution address is defined by the program developer and
given in the linker script. The ROM address is not predefined. It is determined by ebFlashSetup in order to
minimize ROM gaps. There are no further data location requirements.

LdBigAppUSB

This program is the counterpart to ,,ebStartUp” and offers fast data transfers via USB port. It transfers the data
to the target system and initiates the StDataFlash startup for running the configuration process.

Because the ROM is empty at startup, the program is transferred by USB-DFU protocol and started by the
MCU. After program start LdBigAppUSB offers a transfer channel for the further data transfers to the target
RAM, using the LDBA (Load Big Applications) protocol. The execution address does not matter because the
program is transferred by DFU protocol, which uses an address predefined by the MCU and set by the link
process.

The preparations are finished now and the project file for ebFlashSetup can be created.

Peer Georgi — 13 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 3. EXAMPLES

3.2.2 Creating the project file

At first the global parameters must be defined. This is basically the same as in the example in[3.1.

GlobalSettings

{
SDRAM_SIZE = 0x10000000; // 256MB

FLASH SIZE = 0x800000; // 8MB

FLASH FILE_MAP IMAGE _NAME = "filemap.img";
FLASH FILE_MAP_ ITEMS = 0x4;

FLASH SETUP_MAP ITEMS = 0x10;

FLASH SETUP_MAP_ IMAGE _NAME = "setupmap.img";
// start values //

SDRAM BOOTLOAD_START ADDRESS = 0x20000000;
SDRAM TRANSFER _START ADDRESS = 0x20000000;
FLASH START ADDRESS = 0x0;

}

Next, the instruction section:

TransferSetup

{

// alle Anweisungsblocke befinden sind innerhalb
// dieses Blockes...

Next step is the initialization of the communication channel. LdBigAppUSB must be transferred at first. It is
then immediately executed by the target MCU.

Transfer
{
TransferLoadAddress = 0x200000; // internal SRAM (CPU)
Image = "LdBigAppUSB";
StoreToFlash = no;
Protocol = "USB-DFU";
ProtocolParam
{
Filename = "$(Image)";

}

Peer Georgi — 14 —

< =S CONITEC DATASYSTEMS
Document: r1.2

ebFlashSetup CHAPTER 3. EXAMPLES
|

In the following the definitions for the start program (boot loader) are given. The ROM address is specified,
while the RAM address does not matter because the program is stored only temporarily in RAM. The Execute
field is required for the boot loader. Because the boot loader is anyway automatically started by the MCU, this

field is set at ,,no”.

Transfer

{
TransferLoadAddress = $(@FIRST_POSSIBLE_TRANSFER SDRAM ADDRESS);

Image = "LdDataFlash";
StoreToFlash = yes;
FlashAddress = 0x0;
BootLoadAddress = ignore;
Execute = no;
Protocol = "USB-LDBA";
ProtocolParam
{
Filename = "$(Image)";
LoadAddress = $(TransferLoadAddress) ;

}

Next follows the allocation table for the boot loader. It is stored to the address 0x4000 in ROM.

Transfer

{
TransferLoadAddress = $(Q@FIRST_POSSIBLE_TRANSFER_SDRAM_ADDRESS) ;

Image = $(FLASH_FILE_MAP_IMAGE_NAME) ;
StoreToFlash = yes;

FlashAddress = 0x4000;
BootLoadAddress = ignore;

Execute = no;

Protocol = "USB-LDBA";
ProtocolParam

{
Filename = "$(FLASH_FILE_MAP_ IMAGE_NAME)";

LoadAddress = $(TransferLoadAddress);

Peer Georgi — 15 —

< =S CONITEC DATASYSTEMS
Document: r1.2

ebFlashSetup CHAPTER 3. EXAMPLES

Now the program that is to be executed.

Transfer

{
TransferLoadAddress = $(@FIRST_POSSIBLE_TRANSFER_SDRAM_ADDRESS) ;

Image = "ping.bin";
StoreToFlash = yes;
FlashAddress = $(Q@FIRST_POSSIBLE_FLASH_ADDRESS) ;

BootLoadAddress = 0x20780000;
Execute = yes;

Protocol = "USB-LDBA";
ProtocolParam

{
Filename = "$(Image)";
LoadAddress = $(TransferLoadAddress);

}

All preparations concerning the ROM are now finished. The next step is preparing the program for flash
memory programming (StDataFlash).

Peer Georgi — 16 —

< “SCONITEC DATASYSTEMS_ Document. 112

ebFlashSetup CHAPTER 3. EXAMPLES

At first the setup table must be transferred. This table is created by ebFlashSetup. The target address is given
by the StDataFlash program (see ,,Prerequisites’)

// Setup-List for StDataFlash
Transfer

{
TransferLoadAddress = 0x20070000;

Image = $(FLASH_SETUP_MAP_IMAGE_NAME) ;
StoreToFlash = no;

Protocol = "USB-LDBA";
ProtocolParam

{
Filename = "$(FLASH_SETUP_MAP_IMAGE_NAME)";

LoadAddress = $(TransferLoadAddress);

}

After defining all those transfers, the setup process has to be specified. The program ,,StDataFlash” must be

transferred and executed.

Transfer

{
TransferLoadAddress = 0x20080000;

Image = "StDataFlash";
StoreToFlash = no;
Protocol = "USB-LDBA";
ProtocolParam

{
Filename = "$(Image)";
LoadAddress = $(TransferLoadAddress);
Execute = yes;

}

}
} // closing the block ,TransferSetup”

Peer Georgi — 17 —

< =S CONITEC DATASYSTEMS
Document: r1.2

ebFlashSetup CHAPTER 3. EXAMPLES

This file is available as configuration example (examplel.prj). Just enter:

ebFlashSetup -p examplel.prj

After running ebFlashSetup, the following files were created in the current directory:

» filemap.bin - the allocation table
» setupmap.bin - the setup table

» setup.ebs - the project file for ebStartUp

All left to do for configuring the target system is entering:

ebStartUp

As soon as the target system is connected via USB and is reset, the configuration starts automatically. After the
configuration process is finished, the target system is bootable.

Peer Georgi — 18 —

< > CONITEC DATASYSTEMS_ Document: r1.2

Chapter 4

Extras

A special feature of ,,ebFlashSetup” is its ability to create a Latex documentation about the memory content.
The output can be in German or English. The three memory allocation tables are documented. For this the
command line parameter ,,-d [delen]” must be given. In the current directory a file named ,,memorymap.latex”
is created. For the above example the following command line will create an English documentation:

ebFlashSetup -p examplel.prj -d en
latex memorymap.latex

dvips memorymap.dvi

ps2pdf memorymap.ps

This will create a file named ,,memorymap.pdf” in the current directory. For the above example this file is
inserted in the following pages.

ebFlashSetup

4.1 Memory content documentation

4.1.1 RAM content during startup

| Memory region | Name | Position | Size |
0x20780000
| ping.bin fixed 16692 Bytes
0x20784133
4.1.2 ROM content
| Memory region | Name | Position | Size |
0x00000000
I LdDataFlash fixed 11116 Bytes
0x00002b6b
0x00004000
[filemap.img fixed 544 Bytes
0x0000421f
0x00004224
I ping.bin variable | 16692 Bytes
0x00008357

4.1.3 RAM content during configuration

| Memory region | Name | Position | Size

0x00200000

| LdBigAppUSB fixed 10840 Bytes
0x00202a57
0x20000000

[LdDataFlash variable | 11116 Bytes
0x20002b6b
0x20004138

I filemap.img variable 544 Bytes
0x20004357
0x2000435c¢

[ping.bin variable | 16692 Bytes
0x2000848f
0x20070000

I setupmap.img fixed 476 Bytes
0x200701db
0x20080000

[StDataFlash fixed 13352 Bytes
0x20083427

CHAPTER 4. EXTRAS

< =S5 CONITEC DATASYSTEMS._

Peer Georgi
Document: r1.2

— 20 —

Chapter 5

Internal structures

The allocation table for the boot loader and the setup table for the ROM setup program are created within files
that are transferred to the target system, additionally to the data. The files are described here

21

ebFlashSetup CHAPTER 5. INTERNAL STRUCTURES

5.1 The allocations table for the system start

This struct contains all necessary information about the data stored in ROM. It’s a static struct and can not be
expanded at runtime. The maximum number of entries can be defined in the project file with the configuration
variable ,,FLASH_FILE_MAP_ITEMS”. The table contains entries of following structure:

#define DF_BTENTRY_FLAG_USE (1 << 0)

#define DF_BTENTRY_FLAG_COPY (1 << 1) //copy this item to sdram //
#define DF_BTENTRY_FLAG_EXEC (1 << 2) //execute this item by default //
#define DF_BTENTRY FLAG_EXEC_ALTERNATE (1 << 3)

// use the item //

// execute this item alternate //

// size = 16+4+4+4+4 = 32 bytes.
struct tDFBlockTableEntry
{
char msItem[16]; // name of image inclusive trailing zero //
unsigned int mDfBTEntryFlags; // load / execution flags //
unsigned int mDfBTEntryDFStart; //start in dataflash //
unsigned int mDfBTEntryDFSize; //size of image //
unsigned int mDfBTEntryMemStart; //location in sdram where the image to be load //
} __attribute_ ((packed));

The last entry is detected by the boot loader due to its initialization with 0. All data fields of the last entry are
to be filled with O therefore.

Peer Georgi — 22 —

< =S CONITEC DATASYSTEMS
Document: r1.2

ebFlashSetup CHAPTER 5. INTERNAL STRUCTURES

5.2 The setup table for the ROM setup program

This table is copied to the target RAM during setup, and used by the ROM setup program for reading the
RAM location of the transferred data blocks. The ROM setup program then writes the data blocks to the flash
ROM. The structure is static and similar to the allocation table. The number of entries must be set through
the configuration variable ,,FLASH_SETUP_MAP_ITEMS”. Because the table is not written intoflash ROM,
the number of entries can be high. The maximum number depends on the configuration program and its target
address settings.

struct cSetupltem

{

char msItemName[16]; // zero terminated msltemName[0] == 0 means end of list /
unsigned int miDFStartAddress; //start address in dataflash //

unsigned int miLoadAddress; // address where the data copied from //

unsigned int miSize; // size of data object //

}i

The configuration program calculates the number of entries from the last entry that contains 0 in all data fields.

Peer Georgi — 23 —

< =S CONITEC DATASYSTEMS
Document: r1.2

	Introduction
	Program structure
	Usage
	Command line parameters
	Configuartion
	Help
	Documentation

	Environment variables

	Supported target platforms
	Supported operating systems

	The project file
	Syntax
	Structure
	Configuration block
	Instruction section

	Variables
	Simple variables
	Function variables
	Configuration variables
	Scopes of validity
	Environment variables

	Instruction blocks

	Examples
	Configuration block
	A real example
	Prerequisites
	Creating the project file

	Extras
	Memory content documentation
	RAM content during startup
	ROM content
	RAM content during configuration

	Internal structures
	The allocations table for the system start
	The setup table for the ROM setup program

